Термины, используемые для характеристики работы регуляторов давления газа

Точность регулирования, % (Па): максимальное положительное или отрицательное отклонение выходного давления от заданного значения в пределах указанного рабочего диапазона расхода газа и входного давления.

Давление закрытия, % (Па): максимальное увеличение значения выходного давления при уменьшении расхода газа до нуля (максимальный прирост давления при работе регулятора на «тупик»).

Статическая ошибка — отклонение регулируемого давления от заданного при установившемся режиме (также называют неравномерностью регулирования).

Ход клапана — расстояние, на которое перемещается клапан от седла.

Диапазон настройки — разность между верхним и нижним пределами давления, между которыми может быть осуществлена настройка регулятора.

Верхний/нижний предел настройки давления — максимальное/минимальное выходное давление, на которое может быть настроен регулятор.

Зона регулирования — разность между регулируемыми давлениями при 10 % и 90 % от максимального расхода

Зона нечувствительности — разность регулируемого давления, необходимая для изменения направления движения регулирующего органа.

Зона пропорциональности — изменение регулируемого давления, необходимое для перемещения регулирующего органа (клапана) на значение его номинального (полного) хода.

Условная пропускная способность Кv — величина, равная расходу воды плотностью 1 г/см3 (1000 кг/м3) в кубических метрах в час через регулятор при номинальном (полном) ходе клапана и перепаде давления 0,1 МПа (1 кг/см2).

Относительная протечка — отношение максимального значения протечки воды через затвор регулирующего органа при перепаде давления на 0,1 МПа и условной пропускной способности Кv.

Конструкции регуляторов давления газа должны удовлетворять следующим требованиям:

— зона пропорциональности не должна превышать 20 % верхнего предела настройки выходного давления для комбинированных регуляторов и регуляторов баллонных установок и 10 % для всех других регуляторов;

— зона нечувствительности не должна быть более 2,5 % верхнего предела настройки выходного давления;

— постоянная времени (время переходного процесса регулирования при резких изменениях расхода газа или входного давления) не должна превышать 60 с.

Основными элементами регулирующих органов являются затворы. Они могут быть односедельные, двухседельные, диафрагменные и эластичные, крановые и заслоночные. В городских системах газоснабжения в основном применяют регуляторы с одно- и двухседельными затворами, реже — с заслоночными и эластичными (рис. 4.2).

Конструктивные схемы дросселирующих органов регуляторов давления газа: а - с односедельным затвором; б - с двухседельным затвором; в - с заслоночным; г - с эластичным

Рис. 4.2: Конструктивные схемы дросселирующих органов регуляторов давления газа: а - с односедельным затвором; б - с двухседельным затвором; в - с заслоночным; г - с эластичным

Односедельные и двухседельные затворы могут выполняться как с жестким уплотнением (металл по металлу), так и с эластичным (прокладки из маслобензостойкой резины, кожи, фторопласта и т. п.). Такие затворы состоят из седла и клапана. Достоинством односедельных затворов является то, что они легко обеспечивают герметичность уплотнения; однако клапаны односедельных затворов являются неразгруженными, т. к. на них действует разность входного и выходного давлений.

В регуляторах давления газа широко применяют тарельчатые плоские клапаны с эластичным уплотнением. Полный ход плоского клапана, при котором будет осуществляться процесс регулирования, определяется из равенства боковой поверхности цилиндра с диаметром седла dc, высотой подъема клапана h и площади седла клапана:

(π(dc)2)/4=πdch;
h=0.25dc

Для примера: регулятор с диаметром седла 4 мм имеет полный ход клапана 1 мм. Практически, высоту подъема плоского тарельчатого клапана принимают (0,3+0,4)dc. Дальнейший подъем клапана не сказывается на его пропускной способности. При изменении формы затвора ход клапана можно увеличить.

Двухседельные затворы при тех же условиях обладают значительно большей пропускной способностью вследствие большей суммарной площади проходного сечения седел. Эти клапаны являются разгруженными, однако при отсутствии расхода газа они не обеспечивают герметичности, что объясняется трудностью посадки затвора одновременно по двум плоскостям. Двухседельные регулирующие органы используют чаще в регуляторах с постоянным источником энергии.

Заслоночные затворы применяют обычно в ГРП с большими расходами газа (например, ТЭЦ) и используют как регулирующий орган регуляторов непрямого действия с посторонним источником энергии.

Эластичный регулирующий орган (рис. 4.2г) имеет шланг 2 и стакан 3, расположенный в корпусе 4. В стакане 3 есть два ряда продольных прорезей 5 и 6 для прохода газа и поперечная перегородка 1. Перегородка 1 и эластичный шланг 2 разделяют полость устройства на три камеры: А — входного, В — выходного и Б — управляющего давления. При отсутствии входного давления шланг герметично отделяет камеру А от камеры В под действием предварительного натяжения, с которым шланг надет на стакан. При подаче Р1 шланг отжимается от стакана. При подаче управляющего давления в камеру Б изменяется зазор между шлангом и стаканом и происходит регулирование. Затвор аналогичного типа имеет регулятор давления РДО-1.

В регуляторах давления газа, устанавливаемых в ГРП, в качестве чувствительного элемента и одновременно привода в основном используют мембраны (плоские и гофрированные).

Плоская мембрана представляет собой круглую плоскую пластину из эластичного материала. Мембрана зажимается между фланцами верхней и нижней мембранных крышек. Центральная часть мембраны с обеих сторон зажата между двумя круглыми металлическими дисками (обжимными). Жесткие диски увеличивают перестановочную силу и уменьшают неравномерность регулирования.

Перестановочное усилие, развиваемое мембраной, зависит от величины так называемой эффективной площади мембраны. Она изменяется в зависимости от прогиба мембраны. Перестановочное усилие определяется по формуле:

N=cFP,

где с — коэффициент активности мембраны;

F — площадь мембраны (в проекции на плоскость ее заделки);

P — избыточное давление рабочей среды;

cF — активная площадь мембраны.

Зависимость коэффициента активности мембраны c от величины ее относительного прогиба Δh приведена на рис. 4.3.

Зависимость коэффициента активности мембраны c от величины ее относительного прогиба

Рис. 4.3